
IDEAS BEHIND COSMOS
CosmOS real-time operating system whitepaper

PAVOL KOSTOLANSKY and FLORIAN LASCHOBER

January 31, 2022



Contents

Acronyms 3

List of Figures 4

List of Tables 5

1 Introduction 6
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Software layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Technical solutions 9
2.1 Core layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 System definitions . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Schedulable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.8 Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.9 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.10 Mutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.11 Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.12 Spinlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.13 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.14 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.14.1 Classic scheduling . . . . . . . . . . . . . . . . . . . 15
2.1.14.2 Performance scheduling . . . . . . . . . . . . . . . . 17
2.1.14.3 Hybrid scheduling . . . . . . . . . . . . . . . . . . . 18
2.1.14.4 Thread sleep . . . . . . . . . . . . . . . . . . . . . . 18

2.1.15 System jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.16 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.17 Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.18 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.18.0.1 Buffer . . . . . . . . . . . . . . . . . . . . . 23
2.1.18.0.2 Double buffer . . . . . . . . . . . . . . . . . 23

2.1.19 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.20 System calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.21 Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.22 OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.23 Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.24 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.25 Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



CosmOS real-time operating system whitepaper

2.1.26 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.26.1 Memory mapping . . . . . . . . . . . . . . . . . . . . 28

2.1.26.1.1 Stack section . . . . . . . . . . . . . . . . . 29
2.1.26.1.2 Program section . . . . . . . . . . . . . . . 30
2.1.26.1.3 OS section . . . . . . . . . . . . . . . . . . . 31
2.1.26.1.4 User code section . . . . . . . . . . . . . . . 32
2.1.26.1.5 Unmapped static data section . . . . . . . . 32
2.1.26.1.6 Unmapped variable data section . . . . . . . 32
2.1.26.1.7 Unmapped code section . . . . . . . . . . . 33

2.1.26.2 Memory protection . . . . . . . . . . . . . . . . . . . 33
2.1.26.2.1 Stack section . . . . . . . . . . . . . . . . . 33
2.1.26.2.2 Program section . . . . . . . . . . . . . . . 34
2.1.26.2.3 OS section . . . . . . . . . . . . . . . . . . . 34
2.1.26.2.4 User code section . . . . . . . . . . . . . . . 34
2.1.26.2.5 Unmapped static data section . . . . . . . . 34
2.1.26.2.6 Unmapped variable data section . . . . . . . 34
2.1.26.2.7 Unmapped code section . . . . . . . . . . . 35
2.1.26.2.8 Peripheral access section . . . . . . . . . . . 35

2.1.26.3 Memory manager . . . . . . . . . . . . . . . . . . . . 35
2.1.26.3.1 Dynamic allocations . . . . . . . . . . . . . 35

2.1.27 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.28 Error handler . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.29 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Integration layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 CustomBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1.1.1 Terminology . . . . . . . . . . . . . . . . . . 43
2.4.2 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2.1 Templates . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2.2 File generation config . . . . . . . . . . . . . . . . . 45

2.4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3.1 Initializer . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3.2 Memory mapper . . . . . . . . . . . . . . . . . . . . 46
2.4.3.3 Permissioner . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3.4 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Discover more 47

2



Acronyms
API Application Programming Interface . . . . . . . . . . . . . . . . . . . . 7

CIL CosmOS Integration Layer . . . . . . . . . . . . . . . . . . . . . . . . . 9

CPU Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 22

GUI Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ISR Interrupt Service Routine . . . . . . . . . . . . . . . . . . . . . . . . . . 37

JSON JavaScript Object Notation . . . . . . . . . . . . . . . . . . . . . . . 43

MCU Micro-Controller Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

OS Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

UI User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

WCET Worst-Case Execution Time . . . . . . . . . . . . . . . . . . . . . . 15

3



List of Figures

1.1 System architecture simplified diagram . . . . . . . . . . . . . . . . . 7
1.2 CosmOS workflow diagram . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Core layer connection with application and integration layer . . . . . 9
2.2 Configuration and variable type connection . . . . . . . . . . . . . . . 10
2.3 Schedulable structure simplified diagram . . . . . . . . . . . . . . . . 11
2.4 Task structure simplified diagram . . . . . . . . . . . . . . . . . . . . 12
2.5 Thread structure simplified diagram . . . . . . . . . . . . . . . . . . . 12
2.6 Program structure simplified diagram . . . . . . . . . . . . . . . . . . 13
2.7 Alarm structure simplified diagram . . . . . . . . . . . . . . . . . . . 14
2.8 Scheduler structure simplified diagram . . . . . . . . . . . . . . . . . 15
2.9 Classic scheduling diagram . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Exceeding the worst critical execution time . . . . . . . . . . . . . . . 16
2.11 Performance scheduling diagram based only on preempt period . . . . 17
2.12 Hybrid scheduling diagram . . . . . . . . . . . . . . . . . . . . . . . . 18
2.13 Exact sleep time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14 Exceeding the required sleep time . . . . . . . . . . . . . . . . . . . . 20
2.15 System jobs inner scheduling example . . . . . . . . . . . . . . . . . . 21
2.16 Core structure simplified diagram . . . . . . . . . . . . . . . . . . . . 22
2.17 Permission variables example . . . . . . . . . . . . . . . . . . . . . . 22
2.18 Buffer structure simplified diagram . . . . . . . . . . . . . . . . . . . 23
2.19 Double buffer structure simplified diagram . . . . . . . . . . . . . . . 23
2.20 Channel structure simplified diagram . . . . . . . . . . . . . . . . . . 24
2.21 Data exchange via channel sequence . . . . . . . . . . . . . . . . . . . 25
2.22 System call sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.23 Operating system structure simplified diagram . . . . . . . . . . . . . 27
2.24 Operating system event call . . . . . . . . . . . . . . . . . . . . . . . 28
2.25 Stacks memory sections layout . . . . . . . . . . . . . . . . . . . . . . 30
2.26 Program memory section layout . . . . . . . . . . . . . . . . . . . . . 31
2.27 Unmapped data memory section layout . . . . . . . . . . . . . . . . . 33
2.28 Accessing specific peripherals from task/thread . . . . . . . . . . . . 35
2.29 Dynamic memory allocation layout . . . . . . . . . . . . . . . . . . . 37
2.30 Fast interrupt sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.31 Slow interrupt sequence . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.32 CosmOS API layers connection . . . . . . . . . . . . . . . . . . . . . 39
2.33 CosmOS generated function like macro API . . . . . . . . . . . . . . 39
2.34 CosmOS integration layer . . . . . . . . . . . . . . . . . . . . . . . . 40
2.35 CosmOS CustomBox architecture . . . . . . . . . . . . . . . . . . . . 42
2.36 Configuration structure . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.37 Generator sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4



List of Tables

2.1 The main difference between task and thread . . . . . . . . . . . . . 15
2.2 System Jobs Group main characteristics . . . . . . . . . . . . . . . . 21

5



Introduction

1.1 Motivation

CosmOS is an open-source project that we have initiated since 2020. We aim to
create a hybrid operating system that offers performance and safety features within
one system.

The CosmOS architecture also allows the generation of all configuration code by
model descriptions to increase productivity, make code portable, and enforce consis-
tency. We created a set of tools with a graphical user interface to help users with the
CosmOS deployment, consisting of configuration, validation, and code generation.

It also supports the C/C++ language with the dynamic allocation and allows
users to develop more complex algorithms.

We developed CosmOS according to safety-critical design principles and coding
best practices and we will strive to enhance the overall quality and safety of the
software for the future releases.

1.2 Architecture

CosmOS architecture is microkernel-based and implements a near-minimum amount
of the operating system’s software.

The main parts of the CosmOS microkernel is scheduling, memory handling, and
data exchange interface. The data exchange interface is the operating system’s ba-
sic inter-program communication model. The microkernel can be easily expanded
either with system jobs if it is necessary and make the microkernel modular, even
though is highly suggested to implement all services in the user space and use data
exchange interface for the inter-program communication as it is shown in the figure
1.1.

The programs are running in the user space and each of them encapsulates its
threads and tasks, providing them a safe memory space for the data, and heap for
the dynamic allocation. This design allows users to implement programs with mul-
tiple safety levels without any interference between them.

To ensure memory safety, the operating system configuration is completely static
that includes also configured programs, tasks, and threads and remains constant
during the run-time.
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Figure 1.1: System architecture simplified diagram

1.3 Software layers

CosmOS is composed of three main software layers:

• The application layer contains the user code.

• The core layer contains kernel modules and their configuration without any
microcontroller or compiler dependencies. It comprises the configuration (gen-
erated) units and non-generated units.

• The integration layer contains units providing Application Programming In-
terface (API) for the core layer, and it is microcontroller-specific.

1.4 Main features

We implemented multiple safety concepts to ensure it offers safety and perfor-
mance features.

The following list contains the main features of the CosmOS and CustomBox:

• The CustomBox Graphical User Interface (GUI) helps users with configura-
tion, generation and deployment.

• Support for multi-core microcontrollers.

• Hybrid scheduling combines the cyclic real-time non-preemptive scheduling
and the multi-threading preemptive scheduling.

• Memory mapping and memory protection of tasks/threads stacks, user pro-
gram heaps, and user program data.

• Memory manager supports thread-safe dynamic allocations.

• Inter-program safe data transfers.

• Configurable tasks/threads permissions for data transfers.

7
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• Possibility to implement drivers in application layer with configurable periph-
eral access.

• Modular kernel expansion by system jobs with inner scheduling.

• Configurable synchronization primitives.

• Highly portable and modular design, which is easy to port and expand.

1.5 Workflow

In the figure 1.1 is shown the workflow diagram of the CosmOS. CustomBox tool
helps with most of the configuration steps.

First, user has to choose and download the integration and core bundle. These
bundles contains all necessary non-generated source code.

Later user configures the operating system modules and creates the programs,
tasks and threads. After the configuration is completed, user can generate the
configuration source code.

The last step is to implement user code, compile and flash the board.

Figure 1.2: CosmOS workflow diagram
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Technical solutions

2.1 Core layer

We designed the core layer with a focus on the minimal compiler and microcon-
troller dependencies. A set of required API was created to interface with peripher-
als and must be implemented during the microcontroller integration process in the
CosmOS Integration Layer (CIL).

The core layer contains multiple kernel and support modules, such as operat-
ing system run-time specific dynamic allocation implementations, which consist of
smaller parts called units. With this structure, we can test all units separately with
unit tests. We will talk about the each module technical details later in this chapter.

To interface with core layer from the application layer, a generated Cosmos API
and direct kernel module’s API are provided to user as it is shown in the figure 2.1.

Figure 2.1: Core layer connection with application and integration layer

2.1.1 Types

The CosmOS types module is divided into these smaller units:

• standard

• macro

9
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• configuration

• variable

Standard types define the state types, such as function return types or internal
module states. Standard types also define the generic types used in the operating
system, which are not specifically related to the configuration of modules.

Macro types are used for the macro definitions, often created to eliminate com-
piler dependencies to specific build-in functions by creating a generic macro with
multiple macro guards for every supported compiler. These macros are static and
not generated.

Configuration contains type definitions that are often used for the operating
system modules configuration, specifically for the constant data. As they are con-
stant during the runtime, they can be mapped to the CosmOS constant data section
and protected by memory protection against any modifications (privileged and un-
privileged). This memory section can be cached for improving performance since it
contains only constant data. No cache invalidation during the runtime is needed.
The configuration structures are connected its variable data via pointers, to keep
the variable structure addresses protected against any modification as it is shown in
figure 2.2

Variable contains type definitions often used for the operating system modules
configuration, specifically for the variable data. These types do not have to stay
constant during the runtime, and they are mapped to the variable data section
protected by memory protection against any unprivileged modifications. Privileged
software can modify these variables. This memory section can be cached, but cache
invalidation is required every time the data is changed.

Figure 2.2: Configuration and variable type connection

2.1.2 System definitions

The system definitions module contains a subset of system definitions units for
each configurable operating system core module.

10
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In the C language terminologies, each of these units is only a classic header file
with macro definitions, which are used in the configuration of variable types.

The system definitions macros are visible to users and can be used in the appli-
cation layer. However, we recommend that you only use CosmOS generated API as
a more error prevention method.

2.1.3 Switches

The switches module allows the user and integrator to turn on/off some of the
operating system functionalities, which might depend on hardware or are just op-
tional features and do not affect the operating system.

This module has one switch header file per functionality that might be turned
on/off during the system configuration. This header file provides switch macro API
which can be mapped to the real function implementations or serve as stubbed
functions. Therefore, we don’t have to create macro guards around specific function
calls.

2.1.4 Stack

The stack module is used mainly as a configuration module. It contains all nec-
essary information about the configured stack memory sections (e.g., task/thread-
/kernel stacks), which are further used in multiple operating system processes. This
module also provides API for interaction with the stack module configuration struc-
ture.

2.1.5 Heap

The heap module is used mainly as a configuration module. It contains all nec-
essary information about program heap memory sections, which are further used in
multiple operating system processes, such as dynamic allocations. This module also
provides API for interaction with the heap module configuration structure.

2.1.6 Schedulable

Schedulables are the base structures that the operating system’s scheduler can
schedule. Task and threads structures are schedulable-based structures extending it
with their specific members. This module also provides API for interaction with the
schedulable module configuration structure. The simplified diagram of the schedu-
lable structure is shown in figure 2.3.

Figure 2.3: Schedulable structure simplified diagram
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2.1.7 Task

Tasks are one of the two possible schedulable extensions as aforementioned. Tasks
are cyclic schedulables used for the critical software execution (non-preemptive) with
a strict period and configurable worst-case execution time. This allows the user to
keep a tight schedule for some of the critical software running in the application layer
of the operating system. Tasks can be configured in such a way that they can access
some of the system resources without using kernel services. For example, they can
access specific protected memory regions, such as peripherals. Tasks are configured
via the CosmOS CustomBox GUI in the tab Tasks. This module also provides API
for interaction with the task module configuration structure. The simplified diagram
of the task structure is shown in figure 2.4.

Figure 2.4: Task structure simplified diagram

2.1.8 Thread

Threads are one of the two possible schedulable extensions as aforementioned.
Threads are used for non-critical software execution. They can be preempted
and scheduled based on their unique priority (within the core they are bound to).
Threads can be configured in such a way that they can access some of the system
resources without using kernel services. For example, they can access specific pro-
tected memory regions, such as peripherals. Threads are configured via the CosmOS
CustomBox GUI in the tab Threads. This module also provides API for interac-
tion with the thread module configuration structure. The simplified diagram of the
thread structure is shown in figure 2.5.

Figure 2.5: Thread structure simplified diagram

2.1.9 Program

Programs consist of tasks and threads that the user can easily assign to the desired
program. This is to share program resources (such as program data and program
heap) with multiple tasks and threads. Running those threads and tasks within the
context of one program is described further in paragraph 2.1.26.2.3. The program
also has its memory section (described in detail in paragraph 2.1.26.1.2).The user can

12



CosmOS real-time operating system whitepaper

configure the data memory and the heap memory size via the CosmOS CustomBox
GUI in the tab Programs. This module also provides API for interaction with the
program module configuration structure. The simplified diagram of the program
structure is shown in figure 2.6.

Figure 2.6: Program structure simplified diagram

2.1.10 Mutex

Mutexes are one of the synchronization primitives that are implemented in Cos-
mOS. A mutex is designed to grant exclusive access to shared resources to the specific
thread. The mutex locking mechanism can be used only for threads within one pro-
gram. In CosmOS, we implemented two ways of obtaining a mutex. One way is a
non-blocking method and does not cause thread preemption in case of unsuccessful
locking of the mutex. In case of unsuccessful locking of the mutex, the other way
will trigger the thread preemption and unblock it after the mutex is unlocked again.
The mutex implementation also provides additional protection against a deadlock.

2.1.11 Semaphore

Semaphores are one of the synchronization primitives that are implemented in
CosmOS. A semaphore is designed to grant exclusive access to a critical section to
a specific thread. The semaphore locking mechanism can be used only for threads
within the operating system instead of the mutexes, which can be only used within
the program. In CosmOS, we implemented two ways of obtaining a semaphore.
One way is a non-blocking method and does not cause thread preemption in case
of unsuccessful locking of the semaphore. In case of unsuccessful locking of the
semaphore, the other way will trigger the thread preemption and unblock it after
the semaphore is unlocked again. The semaphore implementation also provides
additional protection against a deadlock.

2.1.12 Spinlock

Spinlocks are one of the synchronization primitives that are implemented in Cos-
mOS. A spinlock is designed to grant exclusive access to shared resources to a
specific schedulable (task/thread). The spinlock locking mechanism can be used in
tasks and threads within the operating system. In CosmOS, we implemented two
ways of obtaining a spinlock. One way is the non-spinning method and does not
cause spinning in the loop waiting for spinlock release in case of not successful lock-
ing of the spinlock. In case of unsuccessful locking of the spinlock, the other way will
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wait in a loop until the spinlock is unlocked again. The spinlock implementation
also provides additional protection against a deadlock.

2.1.13 Alarm

The alarm module is a necessary part of the thread sleep feature implementation
in CosmOS. For each configured thread in the operating system, there is one alarm
structure generated. The alarm structure contains a countdown timer, which is
loaded during the sleep thread API call and updated every time the system timer
triggers the scheduler algorithm. The alarm structure also stores its state - either
activated or deactivated which tells the scheduler to update only activated alarms
to decrease execution time. When the alarm expires, the thread is unblocked again
by setting its state to ready, and the alarm is disabled. The simplified diagram of
the alarm structure is shown in figure 2.7.

Figure 2.7: Alarm structure simplified diagram

2.1.14 Scheduler

The scheduler module is dedicated to task and thread scheduling. CosmOS im-
plements a hybrid scheduling algorithm that is driven by the system timer or specific
function calls that may trigger the reschedule such as mutexes, semaphores, chan-
nels, and interrupts, in addition to the system timer and consists of two parts:

• classic scheduling

• performance scheduling

Both algorithms work with the Schedulable structure, which contains basic
information for the scheduler. In CosmOS, we differentiate between two basic types
of schedulable extension.

• critical task

• non-critical thread

Both inherit the schedulable data structure and add some necessary data for the
specific extension. The main difference between task and thread is shown in table
2.1.
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Table 2.1: The main difference between task and thread

Task Thread

It is periodic with a fixed period ✓ —
Can be preempted — ✓

Is killed after Worst-Case Execution Time (WCET) ✓ —
Stack space is reused ✓ —

Floating-point usage allowed ✓ ✓
Can use dynamic allocation — ✓

Can use spinlocks ✓ ✓
Can use mutexes — ✓

Can use semaphores — ✓
Can use buffers (inter-program, inter-core) ✓ ✓
Can use channels (inter-program, inter-core) — ✓

Can handle interrupts — ✓
Can be put to sleep — ✓

The simplified diagram of the scheduler structure is shown in figure 2.8.

Figure 2.8: Scheduler structure simplified diagram

2.1.14.1 Classic scheduling

The classic scheduling algorithm handles cyclic non-preemptive critical tasks
scheduling. It uses a static schedule table generated by CustomBox.

The main idea of the classic scheduling was to reduce the number of system
timer interrupts and allow the processor to stay in some of the low power modes for
a longer time.

The main characteristics of the classic scheduling algorithm are:

• The algorithm uses the hyper period that is defined as the least common
multiple of the tasks periods.

• Tasks are cyclically triggered with their period.

• Tasks use wrappers with system call that signalizes the operating system after
a user code is executed.

• If the system call is not executed before the timer interrupt occurs, the safety
reaction is triggered.

• The scheduler always sets timer ticks either to the WCET or the next start
time.
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In figure 2.9 shows the classic scheduling diagram with naming conventions related
to the reference hardware architecture.

Figure 2.9: Classic scheduling diagram

Figure 2.10 shows a safety reaction to the worst critical execution time exceed-
ing naming conventions related to the reference hardware architecture. The safety
reaction is triggered directly in the system timer handler to minimize the delay.

Figure 2.10: Exceeding the worst critical execution time
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2.1.14.2 Performance scheduling

The performance scheduling algorithm handles the preemptive non-critical threads
scheduling. It uses a non-critical thread queue to take the highest priority thread
as fast as possible each time the rescheduling event occurs. Performance scheduling
algorithm also offers to stop the thread’s execution caused by multiple events, such
as putting the non-critical thread to sleep, being blocked by a mutex or semaphore.

The main characteristics of the performance scheduling algorithm are:

• The algorithm schedules a non-critical threads based on their unique priority.

• Threads are preempted in case of:

– System timer interrupt, with the constant preempt period.
– Thread tries to receive data through the channel but there are no pending

data.
– Thread tries to obtain mutex locked by another thread.
– Thread tries to obtain semaphore locked by another thread.
– Thread tries to handle the interrupt, but there has been no interrupt

request made yet.
– Thread suspends its execution for a specified period with the thread sleep

function.

Figure 2.11 shows a performance scheduling diagram with naming conventions re-
lated to the reference hardware architecture.

Figure 2.11: Performance scheduling diagram based only on preempt period
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2.1.14.3 Hybrid scheduling

As aforementioned, the hybrid scheduling algorithm consists of classic and per-
formance scheduling. With this combination, it is possible to schedule critical tasks
and non-critical threads within one system.

Figure 2.12 shows a hybrid scheduling diagram with naming conventions related
to the reference hardware architecture.

The main characteristics of the hybrid scheduling algorithm are:

• Tasks are periodically scheduled and cannot be preempted, but just termi-
nated.

• Threads are scheduled based on their unique priority and can be preempted
when one of the mentioned events (2.1.14.2) occurs.

Figure 2.12: Hybrid scheduling diagram

2.1.14.4 Thread sleep

Thread sleep implemented in CosmOS is used for suspending thread execution
for the required periods of time. For this purpose, every thread has its alarm with
timer and state variable configured in the operating system, as it was mentioned
before in subsection 2.1.13. The internal alarm timer has the same period as the
scheduler preempt period. Still, we are not interrupting the task for the specified
worst-case critical execution time during the critical task execution. However, the
timer won’t be updated for this period. Inaccuracy can also be caused by executing
a higher priority thread, which can delay the execution of the unblocked thread with
an expired alarm.
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Figure 2.13 shows the most accurate result that can be achieved with thread
sleep. The thread sleep API is called before the system timer interrupt occurs. The
required sleep period is 1 ms which is the same as the preemption period. During
the sleep state of thread 0, thread 1 with higher priority is executed, but afterward,
it’s blocked (e.g., by unsuccessful mutex locking) before the system timer interrupt
occurs. The thread 0 alarm is updated during the scheduler execution triggered by
the system timer. As the alarm expires for thread 0, it can be set to the ready state,
and as there is no higher priority thread ready, it can be scheduled again.

Figure 2.13: Exact sleep time

Figure 2.14 shows an example of the inaccuracy of the thread sleep. The thread
sleep API is called in the middle of the preemption period. The required sleep period
is 1 ms, which is the same as the preemption period. During the sleep state of thread
0, thread 1 with higher priority is executed, but afterward, it is preempted by the
system timer interrupt, and the scheduling algorithm is called. The scheduling
algorithm picks the critical task as its start time, and the system timer is set to the
WCET. The thread 0 alarm is updated during the scheduler execution triggered by
the system timer after the WCET. As the alarm expires for thread 0, it can be set
to state ready and scheduled again, but thread 1 is still in state ready. Therefore,
the scheduling algorithm picks it again. After some point, thread 1 is blocked (for
instance, by unsuccessful mutex locking), and as there is no higher priority thread
waiting, thread 0 can be scheduled again.
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Figure 2.14: Exceeding the required sleep time

2.1.15 System jobs

The system jobs module allows the user to run critical software (e. g. drivers) in
the kernel space.

This module reduces otherwise necessary system calls from the user space and
decreases the execution time of the critical software.

All system job handlers (classic c language non-returning functions) run under
critical tasks and inherit all critical task properties. Still, it is possible to create
an inner period for each group of handlers within this task. The system jobs group
period is based on the system job task period. It can be multiplied by the group
period multiplier to increase the inner period for a specific system job group when
it does not have to be scheduled every time the system jobs task is scheduled, as is
shown in figure 2.15. The system jobs group G0 in figure 2.15 is scheduled every
time the system jobs task runs, but the system jobs group G1 is scheduled every
second time as it uses the inner scheduling feature of the system jobs group.
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Figure 2.15: System jobs inner scheduling example

The main characteristics of the system jobs group are shown in table 2.2.

Table 2.2: System Jobs Group main characteristics

System Job Group

Is periodic with task period·multiplier ✓
Can be preempted —

Is killed after WCET ✓
Stack space is reused ✓

Floating-point usage allowed ✓
Can use dynamic allocation —

Can use spinlocks ✓
Can use mutexes —

Can use semaphores —
Can use buffers (inter-program, inter-core) ✓
Can use channels (inter-program, inter-core) —

Can handle interrupts —
Can be put to sleep —

2.1.16 Core

The core module is mainly used as a configuration module that contains all nec-
essary information about configured cores in the operating system. The core module
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is an abstraction for the specific Central Processing Unit (CPU) and is assigned via
the CosmOS CustomBox GUI. Cores collect programs specifically bound to them.
Users can easily assign a specific program to the desired core to access to specific
CPU resources. The core also has its memory sections for the user, unmapped code
executed by it, and unmapped data (static and variable) described in subsection
2.1.26.1. These core-specific memory sections can be configured via the CosmOS
CustomBox GUI in the tab Cores. The simplified diagram of the core structure is
shown in figure 2.16.

Figure 2.16: Core structure simplified diagram

2.1.17 Permission

The permission module enables the user to protect specific system resources such
as buffers.

It is possible to configure permissions for read/write access to some resources. The
implementation of the permissions strives to find a golden mean between memory
consumption and execution time. Therefore, the information about access permis-
sion for specific schedulable is stored as bit, and we can evaluate it with fast bit-shift
operations.

To enhance the security of the permissions module, the inverted values are gener-
ated and stored in memory to ensure that no data is corrupted during the runtime,
as is shown in figure 2.17.

Figure 2.17: Permission variables example
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2.1.18 Buffer

The buffer module is part of the CosmOS data exchange interface. It is mainly
used for inter-program critical tasks communication but not constrained to that.
Threads can also use buffer interface but we strongly suggest to use channels to
increase overall performance of the system.

2.1.18.0.1 Buffer
Buffer unit implements the circular buffer logic adjusted to be used in the op-

erating system. Buffer storage areas are mapped to the operating system memory.
Specifically, Operating System (OS) variables are described in detail in paragraph
2.1.26.1.3. As this memory section can be accessed only by privileged software, the
user can not access the buffers from the user space directly. Besides the classic mem-
ory protection against unprivileged read/write operations, the buffers also use the
permission module, which can restrict the buffer read/write access to the schedula-
ble tasks/threads. These access permissions are checked when the buffer read/write
API is called by the task/thread. The size of the buffer storage areas, together
with the permissions, can be configured via the CosmOS CustomBox GUI in the
tab Buffers. Data coherency for the buffer read/write operations in the multi-core
environment is achieved within the API that uses synchronization primitives (spin-
locks) internally during each requested read/write operation. Therefore we suggest
to to use a buffer interface for the critical tasks as they can not be preempted. The
simplified diagram of the buffer structure is shown in figure 2.18.

Figure 2.18: Buffer structure simplified diagram

2.1.18.0.2 Double buffer
The double buffers are an extension built on the top of the classic buffers and

inherit all their properties. Upon them, we implemented a logic to differentiate
which kernel occupies buffer from the buffer pair (two classic buffers) and which by
the user. The simplified diagram of the double buffer structure is shown in figure
2.19.

Figure 2.19: Double buffer structure simplified diagram
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2.1.19 Channel

The channel module is part of the CosmOS data exchange interface. It can only
be used for inter-program thread communication.

Channels use specific memory areas to transfer data between the sender and
receiver called pools.

Each channel pool is placed in the operating system memory section. Specifically,
OS variables are described in detail in paragraph 2.1.26.1.3. As this memory section
can be accessed only by privileged software, the user can not access the channel
pool from the user space directly. Besides the classic memory protection against
unprivileged read/write operations, the channels also use the permission module,
which restricts the channel send/reply access to the specific threads. These access
permissions are checked when the channel send/reply API is called by the thread.
The size of the channel pools, together with the permissions, can be configured via
the CosmOS CustomBox GUI in the tab Channels. Data coherency for the channel
send/reply operations in the multi-core environment is achieved within the API
that uses synchronization primitives (semaphores) internally during each requested
send/reply operation. This constrains the usage of the channels to the thread type
of schedulables. The simplified diagram of the channel structure is shown in figure
2.20.

Figure 2.20: Channel structure simplified diagram

The simplified concept of the channel is the interface for the synchronized data
transfer between sender (can be imagined as a client) and reply (can be imagined
as a server) thread. Channel implementation currently supports data transfer from
multiple sender threads to one reply thread.

In the figure 2.21 is shown the reply thread receive loop on the right side, where
the thread signalizes first all the clients with the channel receive function call that
is ready to receive data and if there is no data available the reply thread is put to
the listening state and subsequently blocked by the scheduler.

On the left side of figure 2.21 the sender thread is shown. It requests data transfer
by calling the channel send function and also signalizes the channel interface that it
expects reply by calling the channel send function with a non-zero local reply pool
size. Therefore the sender thread is put into the state waiting for reply and blocked
by the scheduler till the reply occurs. Channel send function signalizes the reply
thread that the data are available and if it is blocked by running (in state listening),
the state is again set to ready, and reschedule triggered if the thread in execution
priority is less than the reply thread priority. The reply thread is scheduled again
and can process the data from the sender thread. Afterward the reply thread calls
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channel reply function to transfer the reply to the sender if the sender is waiting
for the reply. In that case, the sender thread is signalized, its state is again set to
ready, and reschedule triggered if the thread in execution priority is less than the
sender thread priority. The sender thread can now process the reply.

Figure 2.21: Data exchange via channel sequence

2.1.20 System calls

The system calls module is used as an interface for transporting a specific number
of arguments (with specified type) to the system call dispatcher, which uses the route
module to retrieve the correct function, as is explained in subsection 2.1.21.

2.1.21 Route

The route module is dedicated to mapping system calls to specific function han-
dlers and entities.
Currently, the system calls are used as an interface function for passing correct argu-
ments types. This allows us to have mapped multiple function handlers and entities
to the one system call interface function. To achieve such behavior, we need to have
a unique route identifier and retrieve the correct function and entity in the system
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call dispatcher. Routes can be configured via the CosmOS CustomBox GUI in the
tab Routes by the user or system integrator if there is a need to add some specific
kernel side service.

Figure 2.22: System call sequence

2.1.22 OS

The OS module is mainly used as a configuration module that contains all neces-
sary information about the operating system and provides API for interacting with
the operating system structure. The operating system structure is an abstraction
structure that stores all configured system structures, such as cores and channels,
etc. The operating system structure must be available across all Micro-Controller
Unit (MCU) masters. The simplified diagram of the operating system structure is
shown in figure 2.23. Besides the interaction with the operating system structure,
the operating system module contains multiple units such as initialization, boot, or
events unit.
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Figure 2.23: Operating system structure simplified diagram

2.1.23 Boot

The operating system boot unit is used mainly for the boot and validation of the
configured memory section in the operating system.

The boot sequence implements copy and set memory operations for the loading
configured sections into the volatile from the non-volatile memory or setting the
uninitialized data memory sections to zero.

It is highly suggested to call the boot sequence right after the MCU start-up.
After the boot is finished we are able to proceed with the operating system

initialization.

2.1.24 Initialization

The operating system initialization unit prepares the hardware for the operating
system start-up and initializes all operating system modules, such as a memory
protection unit or memory manager unit.

The initialization sequence takes place after the operating system boot sequence
and user-specific hardware configuration. After the initialization of the hardware
and all modules, the validation of the boot and initialized modules is performed.

The initialization must be finished before the operating system is started.

2.1.25 Event

The operating system event unit handles the triggering and dispatching of the
events within the operating system.

The main idea of the operating system events is to be able to trigger event from
one core and handle it with the others. On the left side of figure 2.24 the event
trigger mechanism is shown. The core with identifier 0 triggers the event X on
the core with identifier 1. It is also possible to choose just some of the cores in a
multi-core system. After the event is triggered, the hardware mechanism present
on the MCU must signalize the other core. In our example it is the core with the
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identifier 1. On this specific core the handler function for the event X is dispatched
by the operating system dispatch function. After the event handler function was
dispatched, the core signalizes all cores that a new event can be triggered in the
operating system again.

Figure 2.24: Operating system event call

Events use specific memory areas to transfer data between the core that triggers
the event and the core that handles it.

The event pool is placed in the operating system memory section. Specifically,
OS variables are described in detail in paragraph 2.1.26.1.3. As this memory section
can be accessed only by privileged software, the user can not access the event pool
from the user space directly.

Events also use a generic mapping mechanism of the event handler functions based
on the event identifiers. With this approach, it is possible to configure the event
unit via the CosmOS CustomBox GUI in the tab Events by the system integrator
if there is a need to add some specific operating system event.

2.1.26 Memory

The memory module consists of three units: memory mapping, protection, and
manager.

2.1.26.1 Memory mapping

The memory mapping unit is dedicated to mapping all application, core, and
in- integration layer sections to the physical memories. For this purpose, memory
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mapping macros and the linker scripts are generated to ease the mapping of all
sections.

2.1.26.1.1 Stack section
CosmOS consists of three types of stack memory sections: kernel, task, and

thread. All stacks are contiguous memory sections in physical memory with some
minor differences in the mapping and re-usability.

The low address of all types of the stacks memory section is aligned based on the
selected MCU architecture.

Kernel stack section: mapped to the configured physical memory by the system
integrator, as is shown in figure 2.25. The size of the kernel stack can be configured
in the CosmOS CustomBox.

Task stack section: mapped to the configured physical memory by the system
integrator, as is shown in figure 2.25. The task stack size is the biggest stack size of
all tasks attached to the current core.

The task in execution always reuses the stack memory because a task cannot be
preempted.

Thread stack section: mapped to the configured physical memory by the system
integrator, as is shown in figure 2.25.

The size of the thread stack can be configured in the CosmOS CustomBox for
each thread separately.
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Figure 2.25: Stacks memory sections layout

2.1.26.1.2 Program section
The program memory section contains the heap and data subsections, and is a

contiguous block mapped to the configured physical memory. The program data
subsection is divided into the initialized and uninitialized data, and its size can be
configured in the CosmOS CustomBox.

The low address of this memory section is aligned based on the selected MCU
architecture.

Heap is a subsection on top of the program memory layout, as is shown in figure
2.26.

The size of the program heap can be configured in the CosmOS CustomBox for
each program separately.

Initialized data is a subsection of the program memory layout, as is shown in
figure 2.26.

The initialized data subsection contains all initialized data belonging to the cur-
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rent program.

Uninitialized data is a subsection of the program memory layout, as is shown
in figure 2.26.

The uninitialized data subsection contains all uninitialized data belonging to the
current program.

Figure 2.26: Program memory section layout

2.1.26.1.3 OS section
CosmOS consists of the three types of OS sections: constant, variable, and func-

tions. All types of OS sections are contiguous memory sections in physical memory.
In multicore systems, all OS sections have to be mapped by the system integrator

to physical memory shared between all cores.
The low address of all types of the OS sections is aligned based on the selected

MCU architecture.

Constant is a section for constant system data - they stay constant during the
runtime. The size of this section can be configured in the CosmOS CustomBox.

This memory section can be cached for improving performance since it contains
only constant data, and thus, no cache invalidation during runtime is needed.

Variable is a section for variable system data - they do not have to stay con-
stant during the runtime. The size of this section can be configured in the CosmOS
CustomBox.
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This memory section can be cached, but cache invalidation must be performed
every time the data changes.

Function is a section for system functions. The size of this section can be
configured in the CosmOS CustomBox.

This memory section can be cached for improving performance since it contains
only code, and thus, no cache invalidation during runtime is needed.

2.1.26.1.4 User code section
User code is a section for user functions such as task/thread handlers or any

support program functions appropriately mapped to that specific program. The
size of this section can be configured in the CosmOS CustomBox.

This memory section can be cached for improving performance since it contains
only code, and thus, no cache invalidation during runtime is needed.

The low address of this memory section is aligned based on the selected MCU
architecture.

2.1.26.1.5 Unmapped static data section
The unmapped static data section is a contiguous block of memory-mapped to

the configured physical memory, and its size can be configured in the CosmOS
CustomBox.
This section contains all static data (declared by users and also libraries).

This memory section can be cached for improving performance since it contains
only constant data, and thus, no cache invalidation during runtime is needed.

The low address of this memory section is aligned based on the selected MCU
architecture.

2.1.26.1.6 Unmapped variable data section
The unmapped variable data section is a contiguous block of memory-mapped

to the configured physical memory, and its size can be configured in the CosmOS
CustomBox.
This section contains all variable data (e. g., variables from libraries) and the heap
section for libraries or dynamic allocations before the operating system starts up, as
shown in figure 2.27.

The low address of this memory section is aligned based on the selected MCU
architecture.
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Figure 2.27: Unmapped data memory section layout

2.1.26.1.7 Unmapped code section
The unmapped code section is a contiguous block of memory-mapped to the con-

figured physical memory, and its size can be configured in the CosmOS CustomBox.
This section contains all unmapped code (e.g., code from libraries).

The low address of this memory section is aligned based on the selected MCU
architecture.

2.1.26.2 Memory protection

The memory protection software unit is dedicated to reconfiguring the memory
protection regions either during initialization or runtime of the operating system.
This is an optional feature and can be deactivated with the switch module (2.1.3).

2.1.26.2.1 Stack section
The memory protection software unit is used for task/thread protected memory

region operating system runtime reconfiguration and kernel stack configuration dur-
ing operating system initialization.

Task/thread stack protected memory regions are reconfigured when executing
the scheduler algorithm for the task/thread that will be executed next. Read-write
operations can access it by unprivileged and privileged software. The task/thread
stack protected memory region from the prior execution is reconfigured back to its
no-access protected memory region.

Stack overflow protection is achieved with a small no-access protected memory
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region in the stack growth direction.

Kernel stack section: This protected memory region can be accessed for write
operations only by privileged software. Unprivileged software can only read from
this memory region.

Task stack section: This protected memory region can be accessed for read-write
operations by unprivileged and privileged software only when the task is currently
in execution; otherwise, the task stack is a no-access protected memory region.

Thread stack section: This protected memory region can be accessed for read-
/write operations by unprivileged and privileged software only when the thread is
currently executed; otherwise, the thread stack is a no-access protected memory
region.

2.1.26.2.2 Program section
The program-protected memory region is reconfigured during the execution of the

scheduler algorithm for the program. Unprivileged and privileged software can ac-
cess it for read-write operations. The program-protected memory region from a prior
execution is reconfigured back to a no-access protected memory region. Program-
protected memory regions can be accessed only by the tasks and threads bound to
that specific program.

2.1.26.2.3 OS section
OS-protected memory regions (constant, variable, and function) are configured

during the operating system initialization.

Constant section: Privileged and unprivileged software can access a protected
memory region for only read operations.

Variable section: Privileged software can access a protected memory region for
only write operations. Unprivileged software can only read from this memory region.

Function section: Privileged and unprivileged software can access a protected
memory region for only read operations.

2.1.26.2.4 User code section
Privileged and unprivileged software can access a protected memory region for

only read operations.

2.1.26.2.5 Unmapped static data section
Privileged and unprivileged software can access a protected memory region for

only read operations.

2.1.26.2.6 Unmapped variable data section
Privileged and unprivileged software can access a protected memory region for

read-write operations.
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2.1.26.2.7 Unmapped code section
Privileged and unprivileged software can access a protected memory region for

only read operations.

2.1.26.2.8 Peripheral access section
For accessing MCU peripherals directly from task/thread and not via a system

call, we need to configure a low address and size in a specific task/thread peripheral
to create a temporary protected memory region (figure 2.28). It will be reconfig-
ured during the scheduling algorithm execution for unprivileged software read-write
operations for the specific task/thread.

Figure 2.28: Accessing specific peripherals from task/thread

2.1.26.3 Memory manager

This software unit is used for initializing and managing program heap and stack
memory sections.

Dynamic memory allocation and deallocation functions used in the C++ new/delete
operators used after operating system start-up are implemented within the support
CosmOS standard library. These support malloc and free functions use standard
kernel modules API interfaces to get the necessary information about the program
in execution and its heap. Heap memory for each program has its mutex generated
by the OS for a specific program data memory for the allocation and de-allocation
operations.

2.1.26.3.1 Dynamic allocations
New operator: Implemented within the CosmOS Support module. This imple-

mentation is not restricted to use only during the operating system run-time. For
the correct function of the new operator before operating system start-up, the heap
memory is allocated within the unprotected data memory section, as was mentioned
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in paragraph 2.1.26.2.7.
During the operating system runtime, the support CosmOS standard library mal-

loc function is called.

Delete operator: Implemented within the CosmOS Support module. This im-
plementation is not restricted to use only during the operating system run-time.
For the correct function of the new operator before the operating system start-up,
the heap memory is allocated within the unprotected data memory section, as was
mentioned in paragraph 2.1.26.2.7.

During the operating system runtime, the support CosmOS standard library free
function is called.

Support malloc: This function allocates memory for threads running in the
CosmOS application layer. This function can be used only during the operating
system run-time. The heap in each program must be initialized with the malloc
variable placed at the heap memory low address, which is done during the operating
system initialization.

The function places a malloc variable on the heap during every allocation. It is
linked with all variables currently allocated in a specific program heap in a linked
list. The allocated memory chunk is placed above the aligned malloc variable, as is
shown in figure 2.29.

Support free: This function implementation is used to free memory for the
threads running in the CosmOS application layer. This function can be used only
during the operating system run-time. The heap in each program must be initialized
with the malloc variable placed at the heap memory low address, which is done
during the operating system initialization.

The function removes the malloc variable from the linked list of all variables
currently allocated in a specific program heap during each free operation.
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Figure 2.29: Dynamic memory allocation layout

2.1.27 Interrupt

The interrupt module is dedicated to configure and dispatch all interrupts in the
system. In the CosmOS, we differentiate between two types of interrupts handling
techniques - fast and slow.

The fast interrupt is a method where the interrupt is handled directly in the
Interrupt Service Routine (ISR) as it is shown in the figure 2.30. This allows users to
handle the most critical interrupts immediately, and it the interrupt service routine
execution time should be very low.

Figure 2.30: Fast interrupt sequence
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The slow interrupt is a method where the interrupt is handled in its specific
thread as it is shown in the figure 2.31. The thread is unblocked after the interrupt
occurs and blocked again when it is handled. This allows users to create non-
blocking interrupt handling directly in the user space for non-critical interrupts
and therefore it is possible to implement much more complex algorithms inside the
handling thread. We still suggest keeping the handler thread algorithm complexity
at the minimum.

Figure 2.31: Slow interrupt sequence

2.1.28 Error handler

The error handler module detects, traces, and handles all errors which can occur
within the operating system.

The errors are traced for every program configured in the operating system that
can be later used for the debug purpose. Error processing allows triggering the
required error reaction, which can be configured in the CosmOS CustomBox.
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2.1.29 API

CosmOS API module is an interface module with a set of provided API to ease
the interaction between the user and the operating system core modules, as is shown
in figure 2.32.

Figure 2.32: CosmOS API layers connection

API provides functions like macro, and it interfaces with a pre-generated system
call route identifier for the routes configured via the CosmOS CustomBox.

Figure 2.33 shows how the function like macro is generated. The name of the
function is generated based on the routes configuration in the CosmOS CustomBox.
The used type of the system call is also generated based on the configuration of the
specific route together with the return type and function arguments. The system
call identifier is generated number used during the dispatching of the system call
handler function. It is mapped to the handler function configured in the route.

Figure 2.33: CosmOS generated function like macro API

2.2 Integration layer

The integration layer is a type of microcontroller abstraction layer. The CIL
provides a set of API required by the CosmOS core layer, as is shown in figure 2.34.
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Figure 2.34: CosmOS integration layer

2.3 Application layer

The CosmOS application layer is an abstraction layer where the user software is
implemented. User software in this layer is running in unprivileged mode. Therefore,
it is necessary to use the CosmOS API to interact with the kernel modules. The
application layer consists of programs, threads, and tasks, but sometimes in rare
cases, it can also contain some handlers called in operating system hooks. In the
C/C++ language terminology, the application layer consists of the generated source
and header file pairs representing programs. Tasks, threads, or hooks are represented
as function handlers with configured names of the task, threads, or hooks via the
CosmOS CustomBox. Comments encapsulating parts that the user can change and
are not deleted during the re-generation of the programs are placed in the program
source files.

2.3.1 Programs

A program in the application layer can be represented, as mentioned before, as
a source and header file. For each program, the necessary memory mapping macros
are generated. Their usage is explained directly in the generated file to achieve data
mapping to the specific program sections, such as initialized or non initialized data.

2.3.1.1 Tasks

Tasks are in the application layer and can be represented, as mentioned before,
as a function handler. These functions are declared inside the schedulable kernel
module but exposed during the linking phase. Each task code is automatically
mapped to the specific application section and does not have to be explicitly mapped
to program data by the user. The tasks are generated with all necessary information
(e.g., WCET or task period) to ease the implementation phase.
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2.3.1.2 Threads

As mentioned before, threads are in the application layer and can be represented
as a function handler. These functions are declared inside the schedulable kernel
module but exposed during the linking phase. Each thread code is automatically
mapped to the specific application section and does not have to be explicitly mapped
to program data by the user.

2.3.2 Hooks

As mentioned before, hooks are in the application layer and can be represented
as a function handler. During their execution, these functions are called inside the
operating system hooks and must be implemented carefully as they are handled as
privileged software.

2.4 CustomBox

The CustomBox is the GUI that comes as part of CosmOS, and it is used to con-
figure everything changeable in the system. The User Interface (UI) is a generalized
skeleton, which will dynamically adjust depending on the configuration input.

The idea behind this was to have a generalized UI that can easily and quickly
adopt new features. Adding a feature should require only minimal effort and the
only thing that has to be changed to add support are the configuration files.

The UI connects to all parts of the python codebase and brings everything to-
gether. The UI will use the config parser to load the configuration from the config
files and allow the generator invocation with the click of a button.

All of it is implemented in python. The UI is built using PySide6, but the UI
elements presented will be parsed from the config files dynamically, meaning that it
should never be necessary to edit any python code to add a new configuration field.

In addition, all CosmOS CustomBox specific implementations are completely ab-
stracted away from the UI base (see figure 2.35). It can easily be reused for other
projects if so desired.
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Figure 2.35: CosmOS CustomBox architecture

2.4.1 Parser

The parser used by both CustomBox and the config generator, as seen in figure
2.35, was built to be completely generic and reusable. Upon invocation, the parser
will load all configuration files, validate all defined values and do some processing on
some of the more complex data types (we called it linking). In the end, it will provide
one huge object, which we call the (system) model, containing all of the information
from the config files in an easy-to-use way. This object provides a unified and generic
API, which will always stay the same no matter which data type a certain value is
or how the config files’ model configuration was set up. This API is used every time
any information is requested/changed. All changes done through this API will be
validated against a basic set of rules defined in the config files before being saved to
the model.

The model also provides member functions to check if the configuration was mod-
ified during runtime. It checks if it is different from the config files from which it
was created. It also provides a function for serializing the current state of the ob-
ject. That means that the model can serialize itself, but the parser is required for
deserialization and will yield a new instance of the model object.

There are no warnings in any of the parser’s code. Any misconfiguration, invalid
value, wrong function call, or other errors will result in a python exception that we
tried to make as helpful and descriptive as possible.

2.4.1.1 Configuration

One of the main goals was to create a simple-to-use configuration structure that
can easily cover many different use cases while offering much flexibility to the user.
The main idea was to have a configuration that holds all of the following:

• the configured values
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• information about the datatypes of those values

• the hierarchy of how elements relate to each other

• the information about how to present all of this to a user in a nice looking
graphical user interface

All of this configuration could be either done in one JavaScript Object Notation
(JSON) file containing every configuration parameter needed for the whole system
or, like in our case, many different JSON files in multiple subdirectories and even
split across two repositories. A user setting up a new system would be completely
free to choose the granularity to split up the configuration.

2.4.1.1.1 Terminology
For a better understanding of how the structure is built up, refer to figure 2.36 and
the terminologies below:

The Model, also called Configuration, is the data structure, or more specifi-
cally, the python class instance that contains all information from the config files. It
contains one or more subconfigs, and the model also holds the attribute definition
lookup table.

A Subconfig usually contains one or more elements, and it corresponds to one
single JSON file if that file contains any elements. A file that does not contain any
elements will not get assigned to a subconfig. A subconfig uses the name of the file
it was loaded from, and its name must be unique. It is not supported that creating
multiple config files with the same filename (which could be done because they could
be in different subdirectories).

An Element is a single object that can hold one or more attributes, specifically,
attribute instances. An element also has a name, which is used to access its at-
tributes.

An Attribute, or more explicitly called Attribute Instance, is the object that
holds the actual value of some configuration parameter. An attribute instance has
a name, an attribute definition, and a value.

An Attribute Definition is an object that holds all of the information about
one particular attribute. An attribute definition could be reused for multiple at-
tribute instances holding different information or belonging to different elements.
An attribute definition will hold information about an attribute such as its type,
validation information, label, and tooltips in the UI.
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Figure 2.36: Configuration structure

2.4.2 Generator

The generator takes the configuration files together with some source and header
file templates and a file generation config and creates source and header files from
all of them. These source and header files are automatically generated correctly and
will be considered during the next compilation of the CosmOS operating system.
Upon invocation of the generator, it follows a specific sequence as in figure 2.37
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Figure 2.37: Generator sequence

2.4.2.1 Templates

The templates are the heart of the generator. Additional logics, which could even
be user-defined, are written into the templates. Templates are rendered using the
python package jinja2, and the full feature set of that templating engine can be
utilized. In the templates, users have full access to the whole system model and
its API. They can also access any needed data by using a nice syntax. For exam-
ple: model.cores.core0.coreId would return the value of the coreId attribute
instance of the element with the name core0 defined in a subconfig named cores.

2.4.2.2 File generation config

The file generation configuration is needed for the generator to know where to
find the template, which template should be rendered to which output file, and the
way to do it. This part is kept generic. Only the configuration is CosmOS specific.
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2.4.3 Model

Together with all its logic runners, the model creates an abstract representation
of the operating system, which is used to generate files. The logic runners are small
python plugins that are attached to the configuration generator. Logic runners use
the system configuration files configured by the user via the CosmOS CustomBox
GUI for further module initialization or calculations, modifying parts of the model,
filling in placeholder values, etc.

2.4.3.1 Initializer

The initializer logic runner initializes missing parameters in the model, such as
unique and iterative identifier value assignments, to generate the module’s configu-
rations (e.g., in the arrays).

2.4.3.2 Memory mapper

The memory mapper logic runner is used to map all of the data sections men-
tioned in subsection 2.1.26.1. The memory mapper does all necessary calculations
for the alignment of the section sizes. The mapper also ensures low/high section
addresses to be compatible with the memory protection unit for the specific archi-
tecture configured via the CosmOS CustomBox in the MCU tab.

2.4.3.3 Permissioner

The permissioner logic runner compresses the permissions configured for the
buffers via CosmOS CustomBox in the Buffers tab. The permissions based on
the unique identifier of the schedulable have to be compressed to bit values, as was
explained in subsection 2.1.17

2.4.3.4 Scheduler

The scheduler logic runner generates schedule table entries and composes static
schedule tables, which are used for the classic scheduling algorithm described in
subsubsection 2.1.14.1.
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Discover more
To learn more about the project, we provide a list of links in this section to help

you get started:

• Wiki is our main knowledge base. It will provide you with all the necessary
information about the project. You will find how to use the operating system
with many examples, how you can contribute to the project, what tools we use,
and all other essential information. We highly recommend starting with this
page to find everything from the overview to the in-depth technical details.

• Github organization contains all repositories and projects. If you want to
contribute to or use our project, this is the right place where you can get the
latest source codes, tools and check the current issues.

• YouTube channel helps users understand the basics of the operating system
and provides them plenty of examples to show how to use provided features.

• LinkedIn and Twitter will keep you posted about the upcoming features, re-
leases, and events.

• Discord is our community communication channel. All people interested in
the project are welcome to join.
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